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Abstract

RocksDB is one of the most widely used embeddable persistent key-value stores
available open-source. Its configurability, performance and workload flexibility
have been essential factors that differentiate it from contenders. The data structure,
Log Structured Merge Trees (LSM-trees), used in RocksDB differs from the more
traditional B+ tree especially by offering better write throughput. However, the
LSM-trees themselves do not provide a full-grown solution to all workloads, hence
why there exist so many different databases implementing their own versions of
the data structure.

The amount of data being handled is only increasing, and this makes a case
for write-optimised databases. Enduring high write load has been an issue for
engineers over many years, and there are numerous examples of ticket sale servers
crashing when opening popular events. Distribution techniques and horizontal
database scaling is the regular way to mitigate these issues today, however being
able to handle more writes per node could be very efficient in terms of resources
required.

Auto-tuning databases is in the wind, with examples like Oracle Autonomous
Database and Peloton offering next to no configuration. RocksDB has also
recently received tuning features like dynamically changing level sizes for Leveled
Compaction|1] and an auto-tuning rate limiter|2]. However, RocksDB is known for
dominating background activity by default and requires configuration for optimal
performance for different workloads. This thesis evaluates an implementation of a
compaction auto-tuner for RocksDB and presenting positive write performance
gains during high write load. The research did also attract positive attention from
the RocksDB developers at Facebook.
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Sammendrag

RocksDB er en av de mest brukte innbyggbare persistente ngkkel-verdi datalager
som er tilgjengelig i apen-kildekode. Konfigureringsevnen, ytelsen og lastfleks-
ibiliteten er det som skiller RocksDB fra konkurrentene. Datastrukturen, Log
Structured Merge-trees (LSM-trzer), brukt i RocksDB skiller seg fra de mer
tradisjonelle B+ treerne ved & tilby hgyere skriveytelse. Men LSM-treer er en
datastruktur som ikke lgser alle lastsituasjoner av seg selv, og kan tilpasses for &
oppna optimal ytelse. Dette er grunnen til at det finnes sa mange databaser som
implementerer deres egen versjon av LSM-treet.

Datamengdene som handteres er gkende, og behovet for skrive-optimaliserte data-
baser kommer deretter. A tale hoy skrivelast har veert en utfordring for ingenigrer
i mange ar, og det er utallige eksempler pa billettsystemer som har krasjet ved
apning av populeere arrangementer. Distribueringsteknikker og horisontal skaler-
ing av databaser er den vanlige maten & handtere dette problemet i dag, men
& kunne tale flere skrivinger per node kunne veert veldig effektivt og redusere
behovet for systemresursser.

Automatisk justerende databaser er i vinden, med eksempler som Oracle Autonom-
ous Database og Peloton tilbyr ytelse med naermest ingen konfigurasjon. RocksDB
har ogsa nylig fatt funksjoner som dynamisk forandrende niva-stgrrelser i Leveled
Compaction[1] og en automatisk innstillende skrivebegrenser (rate limiter)[2]. Pa
en annen side er RocksDB kjent for & ha dominerende bakgrunnsaktivitet som
standard, og krever derfor konfigurasjon for optimal ytelse for forskjellige lasttyper.
Denne avhandlingen evaluerer en implementasjon av automatisk justering av ved-
likeholdsoperasjoner (compactions) for RocksDB, og presenterer positive resultater
av skriveytelse under hgy last. Forskningen vakte ogsa positiv oppmerksomhet
blant RocksDB utviklerne i Facebook.
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Chapter 1

Introduction

In this chapter we introduce the motivation behind the project, present research
goals and discuss potential implications of an successful outcome. Lastly we
summarise the structure of the thesis.
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1.1 Purpose

The motive for the research is to enable systems to utilise system resources
more efficiently for write-intense workloads. Companies like Facebook experience
tremendous load, and utilising system resources more efficiently could mean major
cost reductions. Furthermore, single node systems are especially prone to load
issues. An example is ticket sales systems when releasing tickets for popular events,
these systems surprisingly often tend to time out. Companies deploy distribution
techniques and horizontal scaling[3] of their systems to handle the load; however,
this can be costly and challenging to implement.

Automatically configuring databases is in the wind[4], examples like Peloton[5] and
Oracle Autonomous Database[6] optimise themselves using different techniques like
Artificial Intelligence. However there are many factors to evaluate, and different
workloads benefit from different configurations. Researching configurations to
improve databases’ ability to handle higher write load could be valuable for several
use-cases.

Databases implementing the data-structure LSM-tree (Section 2.3) performs
maintenance tasks called Compactions. These maintenance tasks improve space
usage and read performance at the cost of having to do extra writes. The idea
is that by disabling these compactions when the load is high we can improve
the write performance, and by enabling them when the load is low we could
compact the database when there are resources available. If able to handle this
automatically it could exploit the best of both worlds, and be especially applicable
for periodic write-heavy workloads. Though, under the assumption that space
usage and read performance is not critical during a period of high write load.
Nevertheless, the database would reach similar performance after a period of low
load.

1.2 Research Goals

G1: Make RocksDB able to disable and enable compactions auto-
matically.

By making RocksDB able to toggle compactions automatically, we intend that it
should be able to disable compactions based on I/O or other statistics to achieve
higher insertion rate. Additionally, it should enable compactions when it is no
longer required.

G2: Increase RocksDB’s write performance and provide a tuning
baseline for other LSM-based databases.

G2 intends to determine how RocksDB might be able to improve write performance
using compaction tuning and other compaction related parameters.
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RQ1: How can we implement a compaction auto-tuner that dy-
namically toggles compaction, how does it benefit RocksDB and
at what cost does it come?

Answering RQ1 will enable us to reach G1 by implementing a compaction auto-
tuner in RocksDB, and hopefully lead to G2 through evaluation and optimisation
of the implementation. Answering RQ1 could address G2 by providing a baseline
and proof-of-concept of auto-tuning compactions. The result could turn out to be
an interesting contribution to database research in general.

1.3 Thesis structure

The thesis is structured into three main parts: The background chapter intro-
duces RocksDB, features of its underlying data structure, and terms related to
performance evaluation. The implementation chapter presents the hypothesis,
explores the proof-of-concept implementation and optimising its configuration
using an experimental methodology. Benchmarks and results are presented in the
Benchmark chapter with multiple configurations. Lastly, we sum up the research
goals, present a conclusion for the project and discuss future work.
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Chapter 2

Background

This chapter focuses primarily on providing background knowledge related to the
data structure behind RocksDB, as well as discussing RocksDB’s features. Parts
of this chapter is taken from my previous specialisation project|7].
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2.1 NoSQL

NoSQL, non SQL, is a generic term that comprises a series of database systems
that are modelled in other means than relational databases. Especially through
the development of distributed systems, many NoSQL databases have proved to
be suitable. The fact that one can horizontally scale a system by just adding
another node is valuable. Moreover, since one does not have to throw expensive
hardware at a single server, it becomes cheaper to build scalable systems. However,
NoSQL itself does not exclusively promote distributed systems, systems like
Redis[8], LevelDB[9] and RocksDB[10| are examples of NoSQL without any
included distribution abilities. At later stages in NoSQL’s existence it has by
some been referred to as "Not only SQL", since the concepts and databases are
more commonly being integrated into relational database systems and supporting
SQL-queries, e.g. MyRocks[11].

2.2 RocksDB

RocksDBJ[10] is a database system created at Facebook, which was created as a
replacement and improvement over LevelDB. It is based on LevelDB[9], but given
the differences that have been introduced — it is considered a fork. The primary
focus of RocksDB has been performance, specifically for low latency flash storage
and it is written entirely in C++. However, given its modularity it provides many
configuration possibilities that can influence the performance in different scenarios.
RocksDB is a lot more featured and tailored than LevelDB, and thus the general
performance is drastically improved. This encompasses multithreading, bloom
filters, lock optimisations, modular data structures, and tunability.

2.3 LSM-trees

A Log Structured Merge-tree[12] is a file-organisation that offers a lot higher
throughput for write-intensive tasks compared to others, like B+-trees. The
structure of the tree maintains key-value pairs, but differs from other key-value
structures by batching them and optimising the batches for an underlying storage
medium. The LSM-tree exploits the fact that, in current storage hardware,
sequential I/O is a lot cheaper than random I/O operations. This is done by
sorting and batching data streams in memory before writing them sequentially to
disk. The fact that sequential I/0O is cheaper than random I/0 holds for flash
storage as well. So even with flash storage becoming a more viable data-centre
storage medium, LSM-trees provides a well-suited file structure. Also, the write
throughput for flash storage is order-of-magnitude higher than alternatives and
optimisations have been done in RocksDB to exploit such storage mediums even
better.
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2.3.1 SSTables and Memtables

The first part of the LSM-tree structure is sorting and storing data as so-called
SSTables. An SSTable, Sorted String Table, is just a file with key-value pairs
sorted by the key. Initially, the data is written to memory in "Memtables",
and when they exceed a given size, they are marked as immutable and called
an SSTable. When the memory starts to fill up, the in-memory SSTables are
"flushed" to a lower storage layer. Meaning that they are written to bigger and
cheaper storage devices, and it is in these flushes that the LSM-structure allows
for sequential writes to disk. This structure provides an O(1) worst case write
time due to the sort-append nature in memory, but also an O(N) worst case read
time.

2.3.2 Compaction

As mentioned above, the SSTables are marked as immutable. This implies that
one cannot directly update a key-value pair directly, and could pose a storage
problem if one were to store the all the old data, the LSM structure handles this
issue by doing so-called compactions. Compaction merges multiple SSTables into
single, bigger, SSTables, skipping all the overwritten data to avoid storing old
entries. It is important that this process performed efficiently because there is a
trade-off between achieving continuously high read and write throughput and space
efficiency. By having well-compacted SSTables, reads will be faster, since there
are fewer entries to search for. To achieve high write throughput, the compaction
process should avoid too much I/O that throttles incoming writes. Lucky enough,
the LSM structure blesses us with sorted data, allowing for sequential reads
and it is therefore not required to load the entire SSTable into memory during
compactions.

There have been created multiple compaction strategies that are customised for
different amplification factors. Amplification factors for databases are described
in more detail in section 2.4. Below we will give a brief explanation of the most
known compaction strategies.

Leveled Compaction

The default compaction strategy in RocksDB is Leveled Compaction. Leveled
Compaction organises the files in multiple levels usually with increasing sizes
(Fig. 2.2). It guarantees that each SSTable in a level is non-overlapping (except
level-0), meaning that it never exists both an old and an updated entry in the
same level. The SSTables in each level is also always sorted by keys, and this
allow binary search to be used to determine the position of a specific key quickly.
This ability massively increases the read performance; however, it comes at a
write amplification cost.
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Compactions are a necessary evil in LSM-based databases; and as mentioned, it
is required to ensure that the read performance is satisfying. Since the files in
the level-0 have overlapping key-ranges, the database has to do linear seeks when
reading data, instead of utilising the level hierarchy. This makes the level-0 —
level-1 compaction especially important, but is quite heavy when there are many
level-0 files to compact. The level-0 — level-1 compaction cannot be parallelised
by default in RocksDB, but the flag max_subcompactions might be set to make
RocksDB try to partition and execute it in parallel.

Level-0 — Level-0 compaction is a clever compaction method that allows
reduction of available Level-0 files when other compaction threads have locked
partitions of files for other compactions like Level-0 — Level-1. This improves the
read amplification (Section 2.4) while sustaining burst of writes since it reduces
the amount of linear file-seeks required in level-0. The RocksDB team wrote a
blog post concerning this feature at blog.rocksdb.org[13].

The merging-strategy works by taking one or more SSTables from a full level
and merging it with SSTables that matches the key range. The compaction
then merges all the SSTables involved into multiple new ones, to ensure that
the key-range is always sorted. This SSTable key-range matching is illustrated
in Figure 2.1, where an SSTable from Level-2 is getting compacted into Level-3.
After that merge, four SSTables are written to Level-3.

Level 1
Level 2

Level 3

\

l
1
1
I

Figure 2.1: Leveled Compaction: Matching key-range strategy [14]

Level4
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Figure 2.2: Leveled Compaction hierarchy default target sizes in GB

Universal Compaction

Universal Compaction, also called Size-Tiered Compaction, is a compaction
strategy created to improve performance for write-intense workloads. In contrast to
LevelDB and RocksDB, Universal Compaction is the default compaction strategy
for Apache Cassandra[15]. To improve the write-performance this strategy avoids
the costly key-range compaction that is executed in Leveled Compaction — and
lets each SSTable contain the full key-range instead. The SSTables are still sorted
in the compaction runs but avoid overlaps in time-ranges. This is done by merging
SSTables that are adjacent in regards of time, and the output is a single sorted
SSTable that does not overlap any of the other SSTables time-range.

This time-range compaction provides better write performance, but also limitations.
The space used can percentage wise become much higher than the database actually
is. E.g. when the space used is above 125% of the actual data; one might configure
a trigger a full compaction to reduce the size used. During that full compaction,
one has to store two database copies while merging this is called the "Double Size
Issue". This issue implies that the disk has to have a lot of free space available
to allow this compaction. Additionally, universal compaction may experience
problems in databases, like in RocksDB if one chooses to use a single level. Then
a compaction may potentially result in a single big SSTable, and RocksDB does
not support file sizes above 4GB due to uint32 size limit[16].

FIFO Compaction

RocksDB implements a FIFO-compaction strategy, which differs from leveled
and universal in use case. The FIFO style deletes the oldest entry periodically,
which means it might delete data without a user’s interaction. By default, FIFO
does only use a single level, L0, and reads becomes slow if the number of L0 files
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increases. Due to the files eventually being deleted, the number of files allowed
in LO affect the Time-To-Live (TTL) for the data proportionally. In RocksDB,
among others, the number of files allowed is a configurable option to enable
shorter or longer TTL times. The strategy requires little overhead, and given this
property — it is best suited for storing log data and similar. It is recommended to
use the FIFO strategy with caution since files might be deleted and read times
might become slow.

2.4 Amplification Factors

When constructing or configuring databases, one often considers the amplification
factors instead of only benchmarks themselves — since benchmarks often tend
to show that they are better than the competition. The amplification factors
describe the number of operations that the disk would have to process to satisfy
queries, and thus also affects the lifetime expectancy and speed requirements of
the storage devices used. In a real-life situation, the prices of the storage is also
an important factor, because high speed and endurance flash are expensive.

2.4.1 Read Amplification

Read Amplification is the multiple of disc reads that are required to carry out a
query. If a user queries a page, and the disk has to read three pages to satisfy it —
the read amplification is 3. This also includes the reads that hit the cache, since
they also affect the performance.

RA = number of queries - disc reads (2.1)

2.4.2 Write Amplification

Write Amplification is the ratio between data written to disk, and data written
to the database. If the data written to disk is twice the data written to the
database, the write amplification factor is 2. Having a high write amplification is
especially disk wearing. Also, if the disk’s throughput is 500MB /s and the write
amplification is 10, the maximum throughput to the database is 50MB/s. The
write amplification is, therefore, an especially important factor for write-intense

workloads. ) )
data written to disc

WA=
data written to database

(2.2)

2.4.3 Space Amplification

Space Amplification denotes the ratio between the size of the database files and
the size of the data these files use on disk. A 100MB database might use 150MB
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on disk. This amplification is often due to old versions are stored and not removed,
as well as metadata like transaction ids. E.g. InnoDB allocates 13bytes per row for
metadata, even though none may exist. Compression, on the other hand, reduces
space amplification which makes it an important factor to utilise the hardware
resources available. By having a high space amplification, it would require the
user to buy more storage.

- size of database files (2.3)
~ size of database files used on disk '

2.4.4 Trade-offs

When optimising databases regarding amplification factors, one has to choose
what factors to tweak. This decision should be based on what kind of workload
the database endures and the importance of either read, write or storage for the
system. Due to limitations in the database structures, it is impossible to keep
them all low.

Space amplification and write amplification are inversely related, this means one
would have to choose to use an algorithm that optimises for lower space usage at
the cost of requiring more writes, or vice versa. An example of this is shown in
Figure 2.3 where block cleaning is used to reduce disk usage, but at the cost of
having to rewrite the live pages.

Old flash block
25 live
75 old pages pages
New flash block v
25 copied
75 new pages pages

Figure 2.3: Write amplification during block cleaning

Compaction also affects this relation, since compaction reads, modifies and writes
SSTables to remove old pages. Without compaction, the write amplification would
be lower. However, at a major cost to space usage and slower reads, making the
database much less practical in use.
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2.5 Bloom filters

An efficient way to determine whether a key exists in a file or not is using Bloom
filters. Bloom filters are generated using algorithms, often a hash functions, which
creates probabilistic bit arrays. When looking up keys, we test the algorithm
on the key and verify the result with the bit array. The result guarantees not
to produce false negatives, meaning the key is not in the file if it says it is not.
However, it may produce false positives — "the key might be in the file". Bloom
filters can thus be used to increase read performance drastically, and the need
for compactions can, therefore, be reduced for some workloads. The filters do
not remove the compaction requirement since the number of files to test is only
increasing without compactions. By increasing the number of elements, we also
increase the number of false positives and reduce its efficiency. A way to increase
the bloom filters hit rate, is to increase the number of bits in the array generated.
Still, this is not a recommended and optimal way to scale.

2.6 Compression

With the increasing number of CPU-cores and improvement of processing speed
in general, compression has shown to be an interesting factor to further assess
in database-relation. Compression’s main application is to store more using less
space, even though lower space usage often is a good thing it comes at the cost of
having to decompress when rereading the data. In 2018 it is no longer necessarily
a problem to use more space; however, we often need to ingest data quickly.
Compression has become a more viable feature to implement to increase the
insertion rate. The reasoning behind its improved abilities is that disk throughput
is not increasing at the same rate as processing power. Since processing power
outweighs the I/O speeds, it can be beneficial to utilise those resources while
waiting. A reduction of space usage decreases the writing time, thus potentially
increasing the throughput.

2.6.1 Snappy & Zlib

There exists a lot of different software and algorithms that offer different rates of
compression and speeds of compression for both lossy and lossless applications.
So in a database system, there is a fine line of how much time you can spend to
compress. By compressing too extensively, the performance benefit is reduced.
One want to find the sweet-spot where both CPU and I/O is fully utilised.

Snappy is the default compression engine in RocksDB and LevelDB. It provides
both fast compression and decompression and reasonable compression rates. It
features compression speeds of ~200MB/s and 500MB/s on a single core of a
64bit Intel i7 processor [17].
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Z1ib is another supported compression engine in RocksDB, and is widely used
in general. As with Snappy, Zlib is a lossless compression engine; however, it
does not focus as much on compression speeds. Zlib is known for its compression
ability and the fact that it is completely free without any restricting license or
patents. For database purposes, it is not as widely used. Mainly due to its inferior
compression speed.

Even though Snappy provides fast compression, compression is still most viable for
very powerful CPU’s because of the overhead introduced. Despite being defaulted
in RocksDB we decided to skip using compression totally in this research, to avoid
potential irregularities in the benchmarking results.
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Chapter 3

Implementation

This chapter is dedicated to the exploration and implementation of a proof-of-
concept compaction auto-tuner. First, the hypothesis is presented following a
section on the actual implementation including inspirations taken from RocksDB’s
rate limiter. To be able to evaluate and gain results, RocksDB’s benchmarking
tool db_bench was extended with new features for this project. Lastly, a section of
optimising configurations using an experimental methodology for the compaction
tuner is presented.

15
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3.1 Hypothesis

Compacting LSM-based databases is a necessity to ensure acceptable space
usage and read performance, but it requires a lot of system resources. We
hypothesise that by disabling these compactions when I/0 is increasing, and
enabling compactions when it decreases — we can increase write performance. If
this proves to be possible without too much overhead, it could prove especially
valuable for periodic write intense workloads. The hypothesis is deduced from
the fact that many systems experience load issues during, e.g. ticket sales. Even
though it exists solutions that can manage these kinds of loads in 2018, a database
designed to handle these periodic peaks could reduce system requirements and
handle higher load.

3.1.1 Industry comments

As a part of the development process, I posted the hypothesis on the RocksDB’s
Developer forum[18] to try to get some feedback on the project as well as technical
guidance.

As shown in the screenshot 3.1, Mark Callaghan the author of the smalldatum
blog[19] and Facebook employee quickly liked the post and responded that he
thought the project sounded interesting. Furthermore, the post receive multiple
likes by other RocksDB core developers and Facebook employees. Despite person-
ally believing in the potential of the project, these responses were a real motivation
boost and gave the project merit.
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Hans-Wilhelm Kirsch Warlo
@ March 22 at 10:33am
Hil
| am currently evaluating the write performance potential of RocksDB
(and LSM-trees in general) in terms of a periodic write-intense workload,
like e.g. a sinus wave, for my thesis this spring. My main hypothesis is
that by disabling compactions when the I/O is increasing, determining I/O
similarly to the auto-tuned rate-limiter, and enable compactions when it
decreases and possibly trigger a manual compaction — | can increase
write-performance. This comes of course at a cost of read and space
amplification during the peaks.

Given my lack of experience in C++ and the RocksDB core, | was
wondering if anyone could point me in the right direction of a clean way
of structuring and implementing this in RocksDB. | would also love some
feedback on the hypothesis, if any!

| have been fiddling with a custom rate limiter, but my main issue has
been the ability to set the "disable_auto_compactions" flag for the
ColumnFamilyData to use. Since | am not directly able to access the db
instance in the rate limiter, the SetOptions api is not available. | was
thinking that | could implement an interface of some kind in the
environment variable that gets and sets the "disable_auto_compactions",
but haven't dived too deep into this approach yet.

o5 Like (D comment /> Share
O

@ Mark Callaghan Project sounds interesting.o 3
Like - Reply - 3w

e Hans-Wilhelm Kirsch Warlo Thanks! Really appreciate
you weighing in. Please let me know if you come across
anything of relevance or have any further thoughts or
input related to it!

Like - Reply - 3w

Figure 3.1: Feedback from RocksDB Developer Public
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3.2 Parsing statistics

To quickly determine different statistics from the log files produced by RocksDB’s
db_bench a log file parser was implemented in python for this purpose. The
complete source code is available open-source under the MIT Licence[20] at
Github[21] and in Appendix A.

3.2.1 Log file format

The output from RocksDB’s db_bench is piped directly to the terminal. The
statistics output is piped to stderr and captured to log files using UNIX shell 2>
operator, which redirects stderr to a designated file.

An example excerpt of the log files are given below.

Cumulative compaction: 2.09 GB write, 106.48 MB/s write, 1.19 GB read,
60.66 MB/s read, 14.4 seconds

Interval compaction: 1.85 GB write, 130.27 MB/s write, 1.19 GB read, 83.86
MB/s read, 13.2 seconds

Cumulative writes: 10K writes, 10K keys, 10K commit groups, 1.0 writes per
commit group, ingest: 0.93 GB, 47.57 MB/s

Cumulative WAL: 10K writes, O syncs, 10000.00 writes per sync, written:
0.93 GB, 47.57 MB/s

Cumulative stall: 00:00:0.000 H:M:S, 0.0 percent

Interval writes: 7201 writes, 7201 keys, 7201 commit groups, 1.0 writes
per commit group, ingest: 686.97 MB, 47.36 MB/s

Interval WAL: 7201 writes, O syncs, 7201.00 writes per sync, written: 0.67
MB, 47.36 MB/s

Interval stall: 00:00:0.000 H:M:S, 0.0 percent

3.2.2 Retrieving statistics

The parser uses regular expressions[22]| to match the different values in the log
files. Example code used to retrieve values for Interval writes is given below.

interval_regex = ’Interval\swrites.*?(\d*\.\d*)\sMB\/s’
compiled_regex = re.compile(interval_regex)
matches = compiled_regex.findall(file)

This code returns a list of the values matched by the group (\d\.\d*). The regex
searches for lines starting with 'Interval writes’ and the last occurrence of digits
with a . between them with a MB/s suffix. We use these values to automatically
generate coordinates for pgfplots[23] used in this thesis.
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3.3 Implementing Auto-Tuner

Implementing auto-tuning compactions for RocksDB felt initially like a daunting
task, especially given the magnitude of the database project. Containing tens of
thousands of code lines written in C++-, a low-level language working close to the
metal for optimal performance.

3.3.1 Compaction parameters

During preliminary research of RocksDB, it became clear that RocksDB uses an
internal option, disable_auto_compactions, to decide whether to do compac-
tions or not. In addition to disable_auto_compactions, the other parameters
in the PrepareForBulkLoad () [24] function were subject to evaluation, since the
function’s intention is to configure optimal insertion rate for bulk loads. Most of
the parameters set in PrepareForBulkLoad() are evaluated for the Auto-tuner
in Section 3.5. The obvious parameter to change dynamically for this proposed
auto-tuner is the disable_auto_compactions, but should the auto-tuner work
properly it would require increasing the levelO-slowdown parameters, as done in
PrepareForBulkLoad (). This because we want to disable compactions, but we
also need to avoid stalling writes when having a high number of files in level-0.

Additionally, we figured that levelO_file_num_compaction_trigger should also
be dynamically changed. PrepareForBulkLoad () increases the trigger since the
trigger is used in slowdown calculations. However, since it is used to determine
the compaction score and set a trigger threshold for compactions including Level-0
— Level-0 compactions (Section 2.3.2), it should be lower when compactions are
enabled.

3.3.2 Design choices

The disable_auto_compactions flag is exposed through RocksDB’s SetOptions-
API|25], and thus this API seemed like the appropriate way to toggle compactions.
However, when trying to access this API, it became clear that it is a method only
accessible through the database instance. Meaning one would have to have access
to the database instance to set new options — db->Set0Options (). This led to a
design assessment:
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1. Should we implement a higher-order plugin that runs above RocksDB,
that can access the database instance and toggle compactions using the
SetOptions-API?

2. Should we pass a reference to the SetOptions API further down to the core
and call the SetOptions function from within the core itself?

3. Or should we create a new interface for getting and setting the compaction
flags and in a shared environment?

Auto-Tuner

env->DisableCompactions|()
env->EnableCompactions()

@9 Environment

env->disable auto compactions

—»’ ColumnFamilyData ‘

Figure 3.2: Design of getter and setters within RocksDB core using shared
environment,

Alternative one proved difficult to accomplish regarding detection of background
I/0, with less access to database internals. The second alternative was strenuous
because having to pass a reference to the function through all the complex
initialisation layers of RocksDB. The last option turned out to be the easiest to
implement since RocksDB already provided a shared environment for all threads
and database instances in the running process.

3.3.3 Environment

Interface

The compaction interface implementation is shown in Fig. 3.3. It is located in
the env.h header file, and holds different compaction related variables (Sec-
tion 3.3.1). To trigger the disable/enable compactions, we simply execute
the related method DisableCompactions() or EnableCompactions() then the
variables are updated accordingly. For the DisableCompactions() we set the
disable_auto_compactions variable to false, and the levelO_file_num_compaction_trigger
very high to 1<<30. The reason we used 1<<30, 1 bitshifted 30 times to the left,
is because it is done in PrepareForBulkLoad () (Section 3.3.1). Still, this does
only update the variables so the next step is to make RocksDB use them instead
of the default options.
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bool disable_auto_compactions;
int prev_levelO_file_num_compaction_trigger;
int levelO_file_num_compaction_trigger;

void DisableCompactions() {
if (!disable_auto_compactions) {
prev_levelO_file_num_compaction_trigger =
levelO_file_num_compaction_trigger;
disable_auto_compactions = true;
levelO_file_num_compaction_trigger = (1<<30);
}
};

void EnableCompactions() {
if (disable_auto_compactions) {
disable_auto_compactions = false;
levelO_file_num_compaction_trigger
prev_levelO_file_num_compaction_trigger;

1]

Figure 3.3: Compaction interface implementation in the shared environment

Column Family Data

ColumnFamilyData is the class that handles the compaction trigger and stalling
factors within RocksDB. As mentioned, the disable_auto_compactions flag was
read from initialised options. Having created the interface, we wanted to make
RocksDB use this interface instead of the options. The issue was that the
RecalculateWriteStallConditions method in ColumnFamilyData (Fig. 3.5)
did not have a reference to this environment. By latching the Env: :Default ()
provided from env.h onto the ColumnFamilyData class (Fig. 3.4), we were able to
read the compaction variables directly in the RecalculateWriteStallConditions
method. Despite being functioning, the environment is shared across multiple
database instances in the same process, meaning that this implementation will
disable compactions for every instance — even if not opting into tuning. It should,
however, not be a big issue for a proof-of-concept.

ColumnFamilyData* new_cfd = new ColumnFamilyData(
id, name, dummy_versions, table_cache_, write_buffer_manager_, options,
*db_options_, env_options_, this, Env::Default());

Figure 3.4: Extending ColumnFamilyData with a reference to the shared environ-
ment
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This implementation was not the preferred way of achieving the result. The
intention was actually to pass a pointer from the mutable_cf_options, which
hold all the options, to the environment instead of duplicating the specific options.
When pursuing this approach, circular imports posed issues when importing the
cf_options-type from its header file. Despite having pragma once[26], it still
was not able to compile. This could have been circumvented by refactoring the
files, but since the files had a lot of dependencies and 100-1000+ lines in each, we
chose a pragmatic solution to duplicate them for this proof-of-concept.

Fig. 3.5 shows how we use the environment to retrieve and sets the environment
variables to the mutable_cf_options variable. the disable_auto_compactions
flag for every calculation of write stalls, the function that evaluates

-WriteStallCondition ColumnFamilyData::RecalculateWriteStallConditions(
- const MutableCFOptions& mutable_cf_options) {
+WriteStallCondition ColumnFamilyData::RecalculateWriteStallConditions() {
auto write_stall_condition = WriteStallCondition: :kNormal;
if (current_ != nullptr) {
if (mutable_cf_options_.auto_tuned_compactions) {
mutable_cf_options_.levelO_file_num_compaction_trigger =
env_->levelO_file_num_compaction_trigger;
mutable_cf_options_.disable_auto_compactions =
env_->disable_auto_compactions;
}

const MutableCFOptions& mutable_cf_options = mutable_cf_options_;

+ + + + + + 4

Figure 3.5: Retrieval of environment compaction variables when determining write
stalls and compactions

3.3.4 Existing rate-limiter

Despite rate-limiting RocksDB not being the purpose of this project, the rate
limiter can be used to efficiently determine disk I/O based on write requests to
the database. RocksDB features a generic rate limiter used to manage throttling
of maximum write speeds. It uses a classic token bucket technique[27] to perform
the actual rate-limiting, by draining a bucket of tokens which gets refilled in
a specified interval. If the drains the bucket empty, the following requests are
rejected until it is refilled.

This rate limiter is configured with three different flags:
As described by the RocksDB wiki[28]:

e rate_limit_bytes_per_sec: this is the only parameter you want to set
most of the time. It controls the total write rate of compaction and flush
in bytes per second. Currently, RocksDB does not enforce rate limit for
anything other than flush and compaction, e.g. write to WAL.
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e refill_period_us: this controls how often tokens are refilled. For example,
when rate_bytes_per_sec is set to 10MB/s and refill_period_us is set
to 100ms, then 1MB is refilled every 100ms internally. Larger value can lead
to burst writes while smaller value introduces more CPU overhead. The
default value 100,000 should work for most cases.

e fairness: RateLimiter accepts high-pri requests and low-pri requests. A
low-pri request is usually blocked in favor of hi-pri request. Currently,
RocksDB assigns low-pri to request from compaction and high-pri to request
from flush. Low-pri requests can get blocked if flush requests come in
continuously. This fairness parameter grants low-pri requests permission
by 1/fairness chance even though high-pri requests exist to avoid starvation.
You should be good by leaving it at default 10.

3.3.5 Auto-tuned Rate Limiter

In December 2017, RocksDB core developer Andrew Kryczka released an auto-
tuned rate-limiter[2] that tunes the configuration of the rate limiter based on the
background I/O demand. The release of an auto-tuned rate limiter relying on the
background I/O to tune was very convenient and interesting to explore in terms
of this project.

The auto-tuned rate-limiter uses a MIMD-algorithm, Multiplicative Increase Mul-
tiplicative Decrease, typically used for congestion control in network protocols[29].
Background I/0 is detected using upper and lower threshold for the rate-limiter
to kick in. Auto-tuning happens when the time since the last tuning is higher
than kRefillsPerTune timed with the refill_period_us. Meaning auto-tuning
happens every 100th refill_period_us, shown in Fig. 3.6.

if (auto_tuned_) {
static const int kRefillsPerTune = 100;
std::chrono: :microseconds now(NowMicrosMonotonic(env_));
if (now - tuned_time_ >=
kRefillsPerTune * std::chrono::microseconds(refill_period_us_))
{
Tune () ;
}
}

Figure 3.6: Code executed for every write request determining when to Tune()
intervally

The Tune() method in the RateLimiter recalculates and sets a new rate limit and
causes too much overhead to be run for every write request. Therefore it is only



24 CHAPTER 3. IMPLEMENTATION

re-evaluated intervally to reduce the amount of overhead, without an affecting
the rate-limiting appreciably. It works by first determining four constant factors:

1. kLowWatermarkPct = 50
e A threshold determining background I/0 below 50%.
2. kHighWatermarkPct = 90
e A threshold determining background I/0 above 90%.
3. kAdjustFactorPct = 5
e A factor used to adjust potential rate limit value by 5%.
4. kAllowedRangeFactor = 20

e A factor used to determine lowest rate limit value in the range
[max bytes per sec/kAllowedRangeFactor, max bytes per sec]|

To determine the I/O percentages, the number of rate limiter bucket drains and
elapsed rate limit intervals are used. The number of drains increments for every
write request, which means the previous number of drains have to be subtracted
to get the drain difference between the previous tune. Additionally, we need the
total number of refill periods carried out to calculate a percentage.

drained pet — (num__drains — prev_num__drains) - 100

1
elapsed _intervals (3.1)

The elapsed_intervals is determined similarly to the drains, by taking the
current time, subtracting it with the time at the previous tune and dividing it
with the refill period. Lastly, by timing the drain difference with 100 and dividing
on the elapsed_intervals — we get an acceptable I/O estimate. Both the I/O
percentage and elapsed intervals are calculated in Fig. 3.7.
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Status GenericRateLimiter::Tune() {
const int kLowWatermarkPct = 50;
const int kHighWatermarkPct = 90;
const int kAdjustFactorPct = 5;
// computed rate limit will be in
// ¢[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]°‘.
const int kAllowedRangeFactor = 20;

std::chrono: :microseconds prev_tuned_time = tuned_time_;
tuned_time_ = std::chrono::microseconds (NowMicrosMonotonic(env_));

int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
std: :chrono: :microseconds(refill_period_us_) -
std: :chrono: :microseconds (1)) /
std::chrono: :microseconds(refill_period_us_);
// We tune every kRefillsPerTune intervals, so the overflow and division
// by-zero conditions should never happen.
int64_t drained_pct =
(num_drains_ - prev_num_drains_) * 100 / elapsed_intervals;

int64_t prev_bytes_per_sec = GetBytesPerSecond();
int64_t new_bytes_per_sec;
if (drained_pct == 0) {
new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;
} else if (drained_pct < kLowWatermarkPct) {
// sanitize to prevent overflow
int64_t sanitized_prev_bytes_per_sec = std::min(prev_bytes_per_sec,
port::kMaxInt64 / 100);
new_bytes_per_sec = std::max(max_bytes_per_sec_ / kAllowedRangeFactor,
sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
} else if (drained_pct > kHighWatermarkPct) {
// sanitize to prevent overflow
int64_t sanitized_prev_bytes_per_sec = std::min(
prev_bytes_per_sec, port::kMaxInt64 / (100 + kAdjustFactorPct));
new_bytes_per_sec = std::min(max_bytes_per_sec_,
sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
} else {
new_bytes_per_sec = prev_bytes_per_sec;
}
if (new_bytes_per_sec != prev_bytes_per_sec) {
SetBytesPerSecond (new_bytes_per_sec) ;
}
num_drains_ = prev_num_drains_;
return Status::0K();

Figure 3.7: Tune() method for the auto-tuned rate-limiter, where total background
I/O is used to determine a new rate limit
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3.3.6 I/0 detection

Foundation for efficient I/O detection had already been laid in the auto-tuned rate
limiter. This made the process to achieve similar behaviour in the compaction
tuner easier. However since the I/O determined was the total background I1/0
this encompassed both flush and compaction requests, meaning it was not possible
to differentiate between flushes and compactions. For the rate-limiter, this was
ok since its purpose is to throttle new requests regardless what kind of request it
is. However, for a compaction tuner how can one determine when to enable or
disable compactions using this percentage value? With a watermark to disable at
90% and enable at 50%, it works for disabling compactions when increasing. But
once compactions are enabled below 50% compactions jobs starts and increases
1/0 substantially, and once over 90% it disables compactions again. Thus high
compaction pressure disables compactions.

To differentiate flushes and compaction requests, RocksDB makes it quite easy
for us. Compactions are considered low-priority requests and flushes high-priority
requests. By exploiting this priority we can hold a drain variable for both of
the priority levels and using these to avoid the issue with compactions disabling
compactions. The code splitting up num_drains to low and high is provided in
Fig. 3.8

The TuneCompaction() method used to auto-tune compactions is shown in Fig. 3.9.
It uses a similar I/O detection approach as the rate limiter’s Tune() method
(Fig. 3.7). The disparities is the differentiation between high and low prior-
ity requests, the trigger conditions and the usage of the environment interface
(Fig. 3.3).

3.3.7 'Trigger conditions

Having taken inspiration from RocksDB’s rate limiter, it was natural to consider
the same watermarks from the rate-limiter for the compaction tuner. However, we
needed to factor in having both high and low priority drain variables. After some
experimentation and issues with compactions disabling compactions (Section 3.3.6),
we figured that it was most natural to disable compactions when the flush I/0
is above 50% and total I/O is above 90%. If flush I/O increase above 50%, we
then assume that it is subject to further increase. We enable when we see that
total I/0 is below 90% and flush I/0O is below 50%. These assumptions are not
optimal; a workload could potentially disable compactions with flush I/O just
above 50% and continue hovering at that percentage. In this case it would never
enable compactions and waste potential resources that could have been used to
compact the database. Though, for a proof-of-concept tuner, these assumptions
will suffice to show the potential.
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+ o+ o+ o+ A+ o+ o+ +

bool timedout = false;
// Leader election, candidates can be:
// (1) a new incoming request,
// (2) a previous leader, whose quota has not been not assigned yet
due
// to lower priority
// (3) a previous waiter at the front of queue, who got notified by
// previous leader
if (leader_ == nullptr &&
(('queue_[Env::I0_HIGH] .empty() &&
&r == queue_[Env::I0_HIGH].front()) ||
(!'queue_[Env::I0_LOW] .empty() &&
&r == queue_[Env::I0_LOW].front()))) {
bool leader_isnull = leader_ == nullptr;
bool io_high = leader_isnull ? (!queue_[Env::I0_HIGH].empty() && &r ==
queue_[Env::I0_HIGH] .front()) : false;
bool io_low = !io_high ? (!queue_[Env::I0_LOW].empty() && &r == queue_
[Env::I0_LOW] .front()) : false;
if (leader_isnull && (io_high || io_low)) {
leader_ = &r;
int64_t delta = next_refill_us_ - NowMicrosMonotonic(env_);
delta = delta > 0 7 delta : O;
if (delta == 0) {
timedout = true;
} else {
int64_t wait_until = env_->NowMicros() + delta;
if (io_high) {
++num_high_drains_;
RecordTick(stats, NUMBER_RATE_LIMITER_HIGH_PRI_DRAINS);
} else if (io_low) {
++num_low_drains_;
RecordTick(stats, NUMBER_RATE_LIMITER_LOW_PRI_DRAINS);
}
num_drains_ = num_high_drains_ + num_low_drains_;
RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
++num_drains_;
timedout = r.cv.TimedWait(wait_until);

Figure 3.8: Request election extended with high and low priority rate limiter
drains
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Status GenericRateLimiter::TuneCompaction(Statistics* stats) {
const int kLowWatermarkPct = 50;
const int kHighWatermarkPct = 90;

std::chrono: :microseconds prev_tuned_time = tuned_time_;
tuned_time_ = std::chrono: :microseconds (NowMicrosMonotonic(env_));

int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
std: :chrono: :microseconds(refill_period_us_) -
std: :chrono: :microseconds(1)) /
std::chrono: :microseconds(refill_period_us_);
// We tune every kRefillsPerTune intervals, so the overflow and division

-by-
// zero conditions should never happen.
assert(num_drains_ - prev_num_drains_ <= port::kMaxInt64 / 100);

assert(elapsed_intervals > 0);
int64_t drained_high_pct
(num_high_drains_ - prev_num_high_drains_) * 100 /
elapsed_intervals;
int64_t drained_low_pct =
(num_low_drains_ - prev_num_low_drains_) * 100 /
elapsed_intervals;
int64_t drained_pct = drained_high_pct + drained_low_pct;

1]

if (drained_pct == 0) {
// Nothing
} else if (drained_pct <= kHighWatermarkPct && drained_high_pct <
kLowWatermarkPct) {
env_->EnableCompactions();

} else if (drained_pct >= kHighWatermarkPct && drained_high_pct >=
kLowWatermarkPct) {
env_->DisableCompactions() ;
RecordTick(stats, COMPACTION_DISABLED_COUNT, 1);
}
num_low_drains_ = prev_num_low_drains_;
num_high_drains_ = prev_num_high_drains_;
num_drains_ = prev_num_drains_;
return Status::0K(Q);

Figure 3.9: TuneCompaction() method for the compaction auto-tuner that differ-
entiates between flushes and compactions to toggle compactions
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3.4 Extending db_bench

db_bench is the provided benchmarking tool for RocksDB; it features default
benchmarks for many different operations like filling random data, overwriting
existing data, compacting, deletions and more.

3.4.1 Auto-tuner flag

To be able to conduct benchmarks using the compaction tuner, db_bench need a
command line flag for this purpose. db_bench uses gflags[30] to process command
line arguments, and allows easy extension by adding a single gflags DEFINE. This
flag is then accessible using a FLAGS prefix, FLAGS_auto_tuned_compactions
which becomes a boolean.

DEFINE_bool(auto_tuned_compactions, false,
"Enable dynamic disabling of compactions when I/0 is high");

3.4.2 Sine wave

To benchmark RocksDB in terms of a periodic workload, a sine wave was a natural
choice. Implementing a waveform simulation of write load would, therefore, be
an interesting way of visualising the write performance. To enable the sine wave
write rate limiting, we define a bool sine_write_rate and
sine_write_rate_interval_milliseconds to set a recalculation interval.

DEFINE_bool(sine_write_rate, false,
"Use a sine wave write_rate_limit");

DEFINE_uint64(sine_write_rate_interval_milliseconds, 10000,
"Interval of which the sine wave write_rate_limit is
recalculated");

Sine wave function used to determine the write_rate_limit is provided below.
It has an amplitude of 150, with peaks at 50 and 200 (MB/s). The period is set

to 350seconds by taking 32775 = 175 The wave is plotted in Fig. 3.10.
S =75 sin(— &+ °7) 4 125 (3.2)
=7 sin(— x4+ — .
175 2

Initially this sine function was hard-coded in db_bench for the purpose of this
project, but later made generic by adding flags for the constants of f(z) =
Asin(bx 4 ¢) + d. The flags are accessible in the code using FLAGS_sine_a, b etc.
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Figure 3.10: Sine wave for benchmark write rate limit

DEFINE_double(sine_a, 1
"A in f(x)

A sin(bx + ¢) + 4d");

DEFINE_double(sine_b, 1
"B in f(x)

A sin(bx + ¢) + 4d");

DEFINE_double(sine_c, O,
"C in f(x) = A sin(bx + c) + 4d");

DEFINE_double(sine_d, 1,
"D in f(x) = A sin(bx + c) + d");

Figure 3.11: Flags for sine wave constants

The SineRate function in Fig. 3.12 is making use of these constants and calculates
a new point at the sine wave given a double value X, where X is the number of
seconds after the benchmark was initiated.
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double SineRate(double x) {
return FLAGS_sine_a*sin((FLAGS_sine_b*x) + FLAGS_sine_c) + FLAGS_sine_d;
}

Figure 3.12: Sine wave function of X seconds used to calculate new rate limit

3.4.3 Benchmark write rate

db_bench executes a DoWrite method when conducting write benchmarks. The
primary purpose of this method is to write and update related statistics. In this
method, we have access to the current write thread and all thread shares some
variables and functions including a write rate limiter used to handle benchmark
writes. Through this rate-limiter, we can set a new rate limit value, chose
a value calculated using the SineRate (Fig. 3.12) function and the number of
seconds since the start. The write_rate_limiter is reset every 10 seconds and
allows a sine_finished bool to opt out of the sine wave rate limiting during the
benchmark, shown in Fig. 3.13.

if (FLAGS_sine_write_rate) {
if (!sine_finished && usecs_since_last > (
FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {

thread->stats.ResetSineInterval();

uint64_t write_rate = static_cast<uint64_t>(
SineRate(static_cast<double>(usecs_since_start) / 1000000.0)

);

thread->shared->write_rate_limiter.reset(
NewGenericRateLimiter (write_rate)

)

Figure 3.13: Excerpt of dynamic rate limiting in db_bench according to sine wave
function
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For the 700 and 1000sec benchmarks in Chapter 4, we used the sine_finished
flag to set a static write_rate_limit at 10MB/s after an initial sine wave for
350sec. Fig. 3.14 shows the code that executes SetSineFinished() flipping the
sine_finished flag, opting out of the sine wave rate limit.

DEFINE_int32(sine_finished_seconds, O,
"Number of seconds to opt out of sine wave and use
rate_limiter_bytes_per_second instead");

DEFINE_int32(sine_finished_write_rate_limit, O,
"Write rate limit when opting out of sine wave");

if (!sine_finished && usecs_since_start > (FLAGS_sine_finished_seconds *
1000000)) {
thread->stats.SetSineFinished();
thread->shared->write_rate_limiter.reset(
NewGenericRateLimiter (FLAGS_sine_finished_write_rate_limit));

Figure 3.14: Flags handling opting out of sine wave rate limit
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3.5 Configuring the Auto-Tuner

The following section evaluates multiple existing RocksDB options that influences
performance. Options evaluated are taken from PrepareForBulkLoad () [31] which
is RocksDB’s method to optimise write-insertion for bulk loads. We consider
the flags from this method specifically relevant to this tuner. Additionally, we
consider rate-limiting (Section 3.5.1) and subcompactions (Section 3.5.4). Given
the many factors affecting performance in different ways, we chose an experimental
methodology. Meaning we conducted multiple experiments with different values
for the most relevant options.

3.5.1 Rate-limiting

RocksDB suggest setting the rate_limit_bytes_per_sec to the disk write rate on
dedicated hosts for the auto-tuned rate limiter[2]. The database write-throughput
hovers around the half of the maximum write speed, so the rate limiter internally
halves the rate_limit_bytes_per_sec for configuration. For the compaction
tuner, it is also necessary to set this flag as it is used as the 100% 1/O cap per
interval. It calculates the number of bytes allowed to be written per interval, called
refill_bytes. These refill bytes are required to generate the drain variables —
used to determine I/0 efficiently. Despite the drain variables, actual rate limiting
of writes is not required for the compaction tuning. However, it makes the proof-
of-concept more stable concerning disabling and enabling compaction triggers,
which also makes the results more stable and reproducible.

Given the benchmarks conducted without any rate-limit cap results in ~ 190MB /s
flush rate, due to the RateLimiter halving explained above, it was natural to cap
the benchmarks at 380MB/s. This value was chosen instead of the disk write
rate naively since the database is not able to achieve a higher flush rate with
RocksDB compiled in debug mode. Though, this rate limits compactions as well,
and compactions are actually able to achieve higher throughput than flushes — up
to ~ 225 — 250MB/s. Benchmarks without the compaction tuner and rate-limiting
are, therefore, able to compact with a higher rate, which influences the results
presented in the Chapter 4.



34 CHAPTER 3. IMPLEMENTATION

3.5.2 Pending compaction bytes

When flushing decreases below ~100-125MB/s compactions gets enabled, and
post-enabling RocksDB can behave differently using the auto-tuner. By having
soft and hard pending compaction bytes flag set to the default, the flush rate will
decrease close to 0, and the database will compact all the way down to the limit
before continuing allowing further writes. The outcome of this will be that the
database will have better read throughput as quickly as possible after a peak;
however, it spends much time compacting and does somewhat contradicts the
intention of the tuner — increasing write throughput. By setting it unlimited,
flushing can continue as usual. Naturally, then the database will not prioritise
to be as compacted right after the peak. However, the database will continue to
compact for an extended period afterwards — thus having "deferred compactions".
This means that after some time with less load the database will get compacted
similarly. This is the chosen approach for this proof-of-concept. For future work, it
could be interesting to take a more in-depth look at how to handle these post-peak
writes.

Figure 3.15 are excerpts of two benchmarks that shows the different behaviours.
The grey area paints the intervals that have compactions disabled. Once the
compactions are triggered, new writes are stalled for almost 200 seconds by default
until compactions catch up. The writes also struggle once below the compaction
bytes threshold, since it starts accumulating new bytes to compact.

Default pending compaction bytes Unlimited pending compaction bytes
250 e T T 250 e T T
200 - N 200 B
= 150 | | = 150| i
e aa)
=100 1A 100f y
50 - a 50 - *
0 L | L L 0 L il |
200 300 400 500 200 300 400
- = Interval Writes - Interval Writes
—eo—  Cumulative Writes —o—  Cumulative Writes
—+— Cumulative Compaction —+— Cumulative Compaction

Figure 3.15: Difference between limited and unlimited pending compaction bytes
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3.5.3 Threads

When RocksDB is configured to utilise a high amount of compaction threads,
it queues and starts more compaction jobs. This leads to a delayed ramp of
insertion rate during the peaks, meaning that the compaction threads throttle
flush threads despite having lower priority. Thus to ensure that RocksDB can
quickly respond to increasing load, experimentation has shown that one should
use more flush threads than compaction threads to overcome this throttle. An
interesting observation was that by using 1x flush thread, the compaction disabling
did not trigger at all — hovering around 25% of the max flush rate.

In Fig. 3.16 the Interval Writes denotes different flush rates for different amount
of threads. For the plot with 4x compaction threads disables compaction almost
50 seconds later than with 2x compaction threads. Note that these plots were
configured with 4x flushing threads.

As for future work, one should consider investigating the impact of pending
compactions when compactions are disabled. It might be interesting to clear
the compaction queue and cancel running compactions. In this proof-of-concept,
running compactions are allowed to finish after compactions have been disabled.
RocksDB does not have a straightforward way of clearing the queue nor stopping
running compactions and this has not been prioritised in this thesis. However
in the benchmarks conducted this has not been a significant issue, but it is not
wrong to imagine that this might be a throttling factor for some workloads.

3.5.4 Subcompactions

By default RocksDB allocates only one thread for level-0 — level-1 compactions,
despite the number of threads allocated using max_background_compactions or
max_background_jobs. The auto-tuner struggles massively with this compaction
after the number of level-0 files accumulates during a peak. By increasing the
subcompactions flag, we can somewhat increase the parallelism by allowing
RocksDB to range-partition the compaction. This allows multiple level-0 —
level-1 compactions to happen simultaneously and reduces the time spent for
the compaction by about 30-50seconds. A few quick benchmarks revealed that
increasing the flag did not reduce the time spent further. The efficiency of
compactions could most likely be improved even further, however, given the flush
vs. compaction threads impact on triggering the compaction disabling (Fig. 3.16)
— this was left at 2.
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Figure 3.16: Comparison of thread allocation
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3.5.5 Write buffer size

Conducting benchmarks with different write buffer sizes showed a tight correlation
between the number of threads and buffer size. The write rate is exhibiting the
same trend with a buffer size of 4 as with increased compaction threads. When
increasing the buffer to 6, the issue is pretty much gone.

The correlation between the buffer size and the number of threads is a result of
potential starvation[32]. By not having memtables ready for flushing, the flush
threads have to wait for new writes to memory before initiating a new flush.

Increasing the buffer beyond six does not affect the flush rate substantially for
the system used for these benchmarks. Thus, the memory requirement is not
necessarily that high. Smaller devices like smartphones could therefore make use
of an auto-tuner like this.

Figure 3.17 shows the improvement in writes using 6x buffers over 4x. The blue
shaded area shows the difference between optimal and actual writes. The grey
shaded area denotes where compactions gets disabled.

4x write buffers 6x write buffers
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Figure 3.17: Comparison of 4x and 6x memtable buffers
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3.5.6 Resulting configuration

Through the configuration experimentation, we chose to set a few parameters
initially as default by making a PrepareAutoTunedCompactions() method since
the tuner would not behave correctly without these for any system.

if (env_ && mutable_cf_options_.auto_tuned_compactions) {
env_->disable_auto_compactions =
mutable_cf_options_.disable_auto_compactions;
env_->levelO_file_num_compaction_trigger =
mutable_cf_options_.levelO_file_num_compaction_trigger;
mutable_cf_options_.PrepareAutoTunedCompactions();

}

void PrepareAutoTunedCompactions() {
levelO_slowdown_writes_trigger = (1<<30);
levelO_stop_writes_trigger = (1<<30);
soft_pending_compaction_bytes = 0;
hard_pending_compaction_bytes = 0;

}

Figure 3.18: Compaction interface implementation in CFOptions

We did not hard code all parameters since they could depend on the system
running the database. Hence we set the parameters below manually for each
of the auto-tuned benchmarks. Commands for each benchmark conducted is
provided in Chapter 4.

e max_background_flushes = 4

e max_background_compactions = 2
o write_buffer_size = 6

e compression = None

e subcompactions = 2

e sine_a = 75000000

e sine b = ;7= ~ 0.017942857

e sine_c = 37” ~ 4.712388980

e sine_d = 125000000

e rate_limiter_bytes_per_sec = 380000000



Chapter 4

Benchmarks

The following chapter is divided into sections that present and compare results of
the auto-tuned, enabled and disabled compactions for a periodic workload and
maximal throughput using leveled compaction (Section 2.3.2). The benchmarks
are conducted with options determined through experimentation presented in
Section 3.5. Results are evaluated in terms of insertion rate to the database, write
amplification, compaction rate, random read rate and time spent compacting.
In order to a evaluate the different benchmarks conducted using a periodic
workload, a synthetic sine wave workload is used. Since this did not exist in
the benchmarking tool, db_bench, this was implemented for the purpose of this
project. The extension of db_bench is further elaborated in the Section 3.4.
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4.1 System and Installation

System

System specifications:

Ubuntu 17.10 (Artful Aardvark) Kernel 4.13.0-38-generic
Dell OptiPlex 9020

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

16GiB DIMM DDR3 Synchronous 1600 MHz

Lite-On IT LCS-2561.95-11 2.5 7Tmm 256GB

SSD speed

Lite-On IT LCS-2561.95-11 2.5 Tmm 256GB
Sequential Read: 530MB/s and Sequential Write: 430MB/s
Up to 74,000/70,000 IOPS Interface: SATA 111 6.0 GB/s

A few benchmarks were conducted to verify the sequential write rate in Fig. 4.1.

time sh -c "dd if=/dev/zero of=testfile bs=100k count=200k && sync"

The commands executed to retrieve statistics for the performance of the internal
SSD is provided in Fig. 4.1. What it does is using dd[33] to write batches of
100KB for 200k times. In total, this gives 20 GiB of data written. The volume
divided on the time spent gives us the average throughput. The command was
run three times, and the results showed an average of 465MB /s, which is a bit

higher than provided by the manufacturer.

Write Speed

500 T

475 -

MB/s

425 1 1 1

—5— 200K average

Figure 4.1: Write Speed of internal SSD
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Installation

RocksDB requires C++11 and gcc should be version 4.8 or higher. This can be
verified by running gcc -v.

1. sudo apt install gcc build-essential

2. sudo apt install libgflags-dev libsnappy-dev zliblg-dev libbz2-dev
liblz4-dev libzstd-dev

3. git clone git@github.com:hanswilw/rocksdb.git
4. cd rocksdb && git checkout auto-tuned-compactions

5. make db_bench

4.2 Explanation of data

4.2.1 Plots

In the plots we present three different benchmark versions and four different
graphs for each version:

e Enabled is a default configured RocksDB instance, except allowing 2x
compaction threads (Section 3.5.3), 6x write buffers (Section 3.5.5) and
disabled compression (Section 2.6).

e Disabled is similarly configured as the Enabled, with the exception of dis-
abling compactions and increasing levelO-slowdown triggers (Section 3.3.1).

e Tuned is the auto-tuned version, it is configured accordingly to the ex-
periments conducted in Section 3.5. The most significant configurations
is of course enabling the tuner, rate limiting at 380MB/s (Section 3.5.1),
slowdown triggers including pending compaction bytes (Section 3.5.2) and
subcompactions (Section 3.5.4).

e Sine wave is the waveform presented in Section 3.4.2, which is the write
rate limit cap.

e Interval writes is the value of the current write rate for new incoming
writes to the database. This means that the statistic tells us at what rate it
ingests new data, without considering any database internals.

e Cumulative writes is the average accumulated write rate statistic for all
the Interval Writes since the start. It is an interesting statistic in addition
to the intervals since it tells us the total write rate combined from start to
end of the benchmarks.

e Cumulative compaction, on the other hand, is the combined sum of
Cumulative Writes and (cumulative) compactions’ write rate. This is a bit
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ambiguous since one often distinguish between flushes and compactions,
but flushes are included in this statistic. Thus, Cumulative Writes are
considered a part of the Cumulative Compaction rate, and their difference
is data written through the compaction threads.

4.2.2 Statistics

DB size gives an insight into how much data the database holds, and is
interesting to compare with the total written data.

Total written is the combined amount of data flushed and data written
through compactions.

Write Amplification is discussed in greater detail in Section 2.4.2.
Insertion Rate denotes the rate of new data inserted to the database.

Compaction Rate is the sum of the Insertion Rate and data written
through compactions. This means that the difference between the Compac-
tion Rate and the Insertion Rate is the write rate of compactions threads
exclusively.

e Leveled Compaction Stats is the hierarchy statistics in leveled compac-

tion explained in Section 2.3.2.

e Random reads: An easy way of determining the compaction efficiency

./db

is to run a random read benchmark on the resulting database left by the
write benchmarks. The read benchmarks are run with compactions disabled
because RocksDB starts to compact while reading by default — if required.
Throughputs by the read benchmarks are closely correlated with the leveled
compaction stats, meaning that well-compacted databases should and will
provide faster reads than less-compacted. Fig. 4.2 shows the command run
to determine the random read rate for the benchmarks presenter later in
this chapter.

_bench -benchmarks="readrandom,stats" --num=100000 -statistics -
use_existing_db=1 -disable_auto_compactions=true

Figure 4.2: Random read benchmark
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4.3 Sine wave

The benchmark conducted for the following sections are db_bench’s fillrandom.
It is described as "write N values in random key order in async mode"[34].

4.3.1 350sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger

=10000
-levelO_file_num_compaction_trigger=10000 -disable_auto_compactions=
true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=350
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

The auto-tuner was evaluated in terms of the sine wave presented in Section 3.4.2
for three different configurations; a pretty standard with enabled compactions,
with disabled compactions and using the auto-tuner. Benchmarks conducted for
the following sections are done using the commands given above, and the plots
are presented in Fig. 4.3.
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In the first plot showing the Enabled Compactions, we see that the write rate
is not able to cope with the sine wave write rate limit. Interval Writes, being
the red plot with squares, starts diverging already at 50 seconds after start. At
X = 270 seconds, we see that the Interval Writes drops substantially. This is
due to level-0 files exceeding levelO_slowdown_writes_trigger at 20, combined
with the increasing amount of pending compaction bytes. That means RocksDB
slows down new writes until these files are compacted to level-1 (or level-0). The
compaction threads have at this point already started compacting a part of level-0,
but new level-0 — level-1 compactions are waiting for the running compaction to
finish. It will, however, be selected first once available, due to the compaction
score for level-0 is way higher than the other levels given the write-pressure. As a
side note, RocksDB could benefit from a higher number of compaction threads, a
thread per processor core is often recommended. However, to compare the results
with similar conditions, we chose two (Section 3.5.3). Also, experiments with
enabled compactions with increased slowdown triggers are provided in Section 4.5.

By disabling compactions entirely and increasing the slowdown triggers never to
occur, we achieve a pretty much optimal write rate. The second plot shows a
close to perfect correlation between the sine wave write cap and the actual write
rate. In comparison to enabled compactions, this plot results a Cumulative Write
rate at 116MB/s while the enabled results in 62MB/s. So we can conclude that
by disabling compactions we can almost double the write rate for this workload,
at the expense of not compacting the database.

Thirdly, the Auto-tuned Compactions results are presented. As explored through-
out Chapter 3, the goal is to exploit the best of both worlds. The plot shows that
the auto-tuned version can cope with write rate better than the enabled up to
~100MB/s, and this is partly due to the rate limiting affecting the compaction
rate, as well as having increased the slowdown triggers — similarly to the disabled
version. Indications from the rate-limiting were that it stabilised the writes at the
cost of throttling the max compaction rate, making the tuner toggling compactions
more reliably. The grey area shows where the compactions are disabled, and here
is where the tuner shows its strength. It can toggle compactions both when it
is increasing and decreasing, making it able to handle higher write throughput
during the peak and toggling compactions back on afterwards.

As discussed in Section 3.5.1, the compaction rate with compactions enabled is
higher than with the auto-tuned compactions due to the rate limiting. Since the
rate limiting is unnecessary for the tuner, the potential is not fully exploited.
However, it gives a clear indication that it is possible to improve write-performance
by toggling compactions based on I/O since the combined flush and compaction
rate is ~40MB/s higher for the auto-tuner.
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Plots 350sec
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Figure 4.3: Plots of enabled, disabled and tuned compactions for 350 second sine
wave
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Statistics 350sec

Statistics from the 350sec sine wave peak benchmarks are presented in Fig. 4.4.

The random read rate shows the fundamental requirement of compactions for
LSM-based databases. When compactions are disabled, the random read rate is
about 3.4MB/s but enabled it is 74.3MB/s. That is a ridiculous factor of 2185%,
and even 74.3MB/s is a bit slow in this context. Even though the level hierarchy
for Enabled Compactions is far off the target, it was still compacting at the end
of the benchmark. The reason that compactions provides such an improvement
in terms of reads are discussed in better detail in Section 2.3.2, but the primary
reason is avoiding many linear seeks when having many files in level-0.

The performance achieved by the auto-tuner is satisfying, despite the low read
rate. The read rate is expected since we continuously insert a lot of data >50MB/s
and most of the data is inserted while compactions are disabled during the peak.
However it initiates compactions on basically all files in level-0 once enabled, but
it does not have time to finish. The write results, on the other hand, are great; the
insertion rate is similar to the disabled version, while the Cumulative Compaction
rate is 40MB/s higher. These 40MB/s are accumulated in the small windows
where compactions are enabled. Hence being able to exploit the disk speed
better, prioritising new writes and compacting when able to. In total it allows
1 — 42K _ 90.5% more writes than the Enabled Compactions over a 350second

222K
period and just 3K writes off the "write-optimal" Disabled Compactions.
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4.3.2 700sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_1limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger

=10000
-levelO_file_num_compaction_trigger=10000 -disable_auto_compactions=
true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=700
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_1limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000
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Plots 700sec

Similar to 350sec benchmarks, the plots in Fig. 4.5 shows the different write
performance during the sine wave for the three different versions.

The benchmarks were run first with a similar 350second peak, then with a
capped sine_finished_write_rate_limit of 10MB/s continuing from 350 to
700seconds. Thus giving RocksDB time and resources to do compactions, despite
having the small rate limit for the tuned version (Section 3.3.4 and 3.5.1).

With Enabled Compactions, we see that after the sine wave, the compaction rate
sustains a similar rate of 200-250MB/s, despite having 10MB/s Interval Writes.
This indicates that it still has many compaction jobs queued up throughout the
whole run.

Having disabled compactions entirely, we see no unique information despite
inserting the 10MB/s cap after the sine wave. The auto-tuner shows a bit different
behaviour. It bumps the Cumulative Compaction rate from 100 to 150MB/s at
X=575sec, at that point a major Level-0 — Level-1 compaction finishes. At this
point, the read performance increases significantly, presented in the following
Statistics section. In total, we see that the Cumulative Writes for the Auto-tuned
Compactions is similar Disabled Compactions, but at the same time utilising free
system resources to do compactions at a rate of ~ 95MB/s. The Cumulative
Compaction rate is, however, ~ 75MB/s lower than the enabled, due to rate-
limiting and the tuning overhead (Section 3.5.1).
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Figure 4.5: Plots of enabled, disabled and tuned compactions for 350 second sine
wave, followed by 350sec of low load
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Statistics 700sec

Having presented the statistics for the 350second peak, it was natural to identify
compaction stats and read rates for the same configurations after the period of
low load. Questions like how much time RocksDB uses to catch up compacting
after a period with disabled compactions should prove helpful in terms of verifying
the usefulness of the auto-tuner.

The results after 700seconds were satisfying. In comparison to the 350sec bench-
mark the write results were similar, but the random read rate of Auto-tuned
Compactions vastly improved and achieved 53.6MB/s which is about 20% of the
enabled with 35% more data. It should be noted that since the tuned version
inserts more data, it subsequently increases the need for compactions. This means
that it need use more time than the enabled to achieve the same read performance.
Another interesting observation is that the read rate for Enabled Compactions at
this point was over three times higher than after 350sec.

Since the sine_finished_write_rate_limit was capped at 10MB/s, the enabled
benchmarks were able to cope with the new writes meaning that the percentage
difference between the tuned, disabled and enabled was reduced. The tuned
version managed to ingest 462K writes, only 2K less than disabled. Enabled did
only manage 291K, which is the reason for the DB size being 13.3GB smaller than
the auto-tuned. Despite the auto-tuned having improvements in most areas, the
level hierarchy was not completely optimal. As discussed earlier (Section 2.3.2)
the level-1 target size is 300MB, level-2 3GB and level-3 30GB, and the tuned
was not able to compact down to level-3. However, it is order-of-magnitude better
than the completely disabled version, where files just keep accumulating in level-0
and random read rate is catastrophic 3.3MB/s.
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Figure 4.6: Statistics post 700sec
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4.3.3 1000 sec

Benchmark commands

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger

=10000
-levelO_file_num_compaction_trigger=10000 -disable_auto_compactions=
true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics -duration=1000
-value_size=100000 -compression_type=None -sine_write_rate=true
-sine_finished_seconds=350 -sine_finished_write_rate_limit=10000000
-sine_a=75000000 -sine_b=0.017942857 -sine_c=4.71 -sine_d=125000000
-stats_interval_seconds=10 -stats_per_interval=1
-max_write_buffer_number=6 -max_background_flushes=4
-max_background_compactions=2 -subcompactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000
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Plots 1000 sec

Fig. 4.7 presents plots after 1000sec, which basically is just an extended version
of the 700sec run (Fig. 4.5) with additional 300sec with a write rate at 10MB/s.
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Figure 4.7: Plots of enabled, disabled and tuned compactions for 350 sec sine
wave load following a 650seconds of low load



56 CHAPTER 4. BENCHMARKS

Statistics 1000sec

The statistics for the 1000sec run are consistent with the 700sec run, and as
expected the level hierarchy for the auto-tuned and enabled is better distributed.
However, the tuned does not have a completely optimal hierarchy since Level-2
consists of 11.55GB data with a target at 3GB.

As with the prior benchmarks, the random read rate is improved. At this
point we achieve 200MB/s with auto-tuned compactions, which is a satisfying
throughput rate. Having enabled compaction and optimal level hierarchy we
achieve almost 400MB/s. Despite the better read rate, it still has a much higher
write amplification.

In total, these results live up to the intention of the project and prove that this
proof-of-concept has merit. These benchmarks show that it provides overall disk
efficiency improvements for periodic write-intensive workloads, but it could most
likely be applied to many other workloads.

On a side note; when performing benchmarks it is important to ensure that
they are reproducible, and thus we conducted them multiple times. With the
auto-tuner, the compaction trigger points are not identical for every benchmark
run. It generally triggers at similar points (~100-120MB/s), but each run is
always a bit different and some discrepancies are observed. This means that for
a small portion of the runs the Number of writes were lower, due to different
compaction trigger points, but that had the effect that the read rate was better
since more time was spent doing compactions — and vice versa.
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4.4 Bloom filters

As discussed in Section 2.5, using bloom filters increases the read performance
despite having many files in the levels. Also, Siying Dong, a RocksDB core
developer, mentions the possibility to rely on bloom filters for acceptable read
performance for insert heavy workloads with compactions disabled|35]. Since our
random read rates for the auto-tuner and disabled compactions was ~3-4MB/s, it
was interesting to see what performance gain we could achieve by enabling them.

We configured RocksDB to use bloom filters by adding -bloom_bits=10. The
benchmarks conducted are identical to the 350sec in Section 4.3.1 and the read
benchmark in Fig. 4.2, only with this bloom bits flag added.

Fig. 4.9 reveals that the read improvements are quite impressive and that bloom
filters are very advantageous. The auto-tuner achieves a read performance of
108.9MB/s, which only strengthens the value of auto-tuning compactions. Even
with compactions disabled entirely, the bloom filters shows acceptable read through-
puts — achieving 79.7MB/s. This means that by using bloom filters, we can get
both great read performance during the periods of high write load and performing
compactions when the load is low.
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Figure 4.9: Statistics 350sec with bloom filters enabled
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4.5 Enabled Compaction slowdowns

Since the FEnabled Compaction configuration was without the increased levelO
parameters and pending compaction bytes, two quick benchmarks were performed
to compare how much they affect the performance. The intention of this section
is to show that the improvements in the auto-tuner is not because of these
parameters.

As shown in Fig. 4.10, the primary difference lies in the the write rate X =
250sec. With the levelO stalling parameters increased, it is able to avoid the
slowdown which results in cumulative write rate at 81.38MB/s, with stalling it is
61.92MB/s. An improvement, however, still less than the 116.34 MB/s achieved
by the auto-tuner (Fig. 4.4). The slowdown parameters’ intention is to throttle
incoming writes to allow better read performance while writing, meaning that
increasing these reduces the expected read performance.
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200 B 200 - |
£ 1 =z 1
g 50 [~ B QE: 50 |- |
100 | . 100 | |
50 |- - 50 |- :
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—+— Cumulative Compaction —+— Cumulative Compaction

Figure 4.10: Benchmarks that shows how level-0 and pending compaction bytes
stalls
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4.6 Max throughput

4.6.1 250K fillrandom

Benchmark commands:

Enabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics
-writes=500000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval
=1
-max_background_flushes=4 -max_background_compactions=2

Disabled Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics

-writes=500000 -value_size=100000 -max_write_buffer_number=6

-compression_type=None -stats_interval_seconds=5 -stats_per_interval=1

-max_background_flushes=4 -max_background_compactions=2

-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger
=10000

-levelO_file_num_compaction_trigger=10000 -disable_auto_compactions=
true

Auto-tuned Compactions:

./db_bench -benchmarks="fillrandom,stats" -statistics
-writes=500000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval
=1
-max_background_flushes=4 -max_background_compactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000

Benchmarks were also conducted using maximal throughput for 250K fillrandom
writes. As shown in Fig. 4.11, especially with Disabled Compactions we are able
to continuously hold a stable high write rate of ~200MB/s.

Enabled Compactions is more unstable, due to the stalling mechanisms like
level-0 slowdowns described in Section 3.3.1. It does maintain a high Cumulative
Compaction rate at ~250MB/s, which is ~50MB/s higher than the compaction
rate for the disabled. Still, it has issues with its own Cumulative Write rate.

For the Auto-tuned Compactions, it starts similar to the Enabled Compactions
when compactions are enabled initially. This is visible in the grey shaded area of
the Fig. 4.11. Afterwards it converges against the same pattern like the Disabled
Compactions, only differing with a few MB/s due to rate-limiting and tuning
overhead.
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4.6.2 250K overwrite

Benchmark commands:

Command used for filling DB with 250K entries:

./db_bench -benchmarks="fillseq" -statistics
-writes=250000 --value_size=100000 --max_write_buffer_number=6
-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger
=10000
-levelO_file_num_compaction_trigger=4 -compression_type=None
-max_background_flushes=4 -disable_auto_compactions=true

Enabled Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics
-writes=250000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval
=1
-max_background_flushes=4 -max_background_compactions=2
-use_existing_db=true

Disabled Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics

-writes=250000 -value_size=100000 -max_write_buffer_number=6

-compression_type=None -stats_interval_seconds=10 -stats_per_interval
=1

-max_background_flushes=4 -max_background_compactions=2

-levelO_slowdown_writes_trigger=10000 -levelO_stop_writes_trigger
=10000

-levelO_file_num_compaction_trigger=10000 -disable_auto_compactions=
true

-use_existing_db=true

Auto-tuned Compactions:

./db_bench -benchmarks="overwrite,stats" -statistics
-writes=250000 -value_size=100000 -max_write_buffer_number=6
-compression_type=None -stats_interval_seconds=10 -stats_per_interval
=1
-max_background_flushes=4 -max_background_compactions=2
-auto_tuned_compactions=true -rate_limiter_bytes_per_sec=380000000
-use_existing_db=true

We also conducted benchmarks where the database is filled with 250K writes
without compacting anything. The primary intention is to see whether the auto-
tuner is able to disable compactions when the compaction pressure is very high
initially.
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In the Enabled Compactions it is very unstable since different stalling factors
are affecting the write rate. It does not insert anything new into the database
until after 142 seconds, due to the compaction pressure from level-0. It allows
new writes once the compactions have caught up, but drops quickly once the
compaction pressure increases again. Hence, new writes suffers massively when
having a lot of data to compact.

Disabled Compactions and Auto-tuned Compactions shows similar behaviour to
the 250K fillrandom in Fig. 4.11. The positive result here is that the tuner ignores
stalling factors and lets the flushes continue without prioritising compactions.
Our tuner would not be able to trigger if it stalled writes.
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Figure 4.12: Overwriting 250K values
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Chapter 5

Conclusion and Future Work

The following chapter evaluates the research goals presented in Section 1.2, the
outcome of the implementation and discusses potential areas of improvement for
future work.
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5.1 Conclusion

The purpose of this thesis was to enable RocksDB to tune compactions automat-
ically and use it to achieve better write throughput. We presented two research
goals and a research question in Section 1.2 that concretised the project. In
addition, the hypothesis (Section 3.1) postulated the performance potential of
auto-tuning compactions.

G1: Make RocksDB able to disable and enable compactions auto-
matically.

G2: Increase RocksDB’s write performance and provide a tuning
baseline for other LSM-based databases.

RQ1: How can we implement a compaction auto-tuner that dy-
namically toggles compaction, how does it benefit RocksDB and
at what cost does it come?

Throughout the project we have answered RQ1; the Implementation Chapter 3
presents an implementation of a proof-of-concept auto-tuner — achieving G1, and
the Benchmark Chapter 4 shows the results and discusses the pros and cons —
achieving G2. In total, we are able to conclude that write-intense workloads can
benefit from auto-tuning compactions, and with bloom filters we can avoid bad read
performance when compactions are disabled as well. Improving write performance
was a presumed outcome since we knew that compactions were resource demanding.
On the other hand, we could not assume that we would be able to implement
a proof-of-concept that gave such satisfying results. Nevertheless, the proof-of-
concept is by no means a perfect implementation. There are a lot of areas that
can be improved; especially the trigger conditions (Section 3.3.7), the rate-limiting
(Section 3.5.1) and thread allocation (Section 3.5.3).

After finishing the implementation, I posted an excerpt of this thesis including the
benchmarks and implementation details at the RocksDB Developer Forum|[18].
The post attracted interest from multiple people, including many of the RocksDB
core developers at Facebook. Siying Dong, one of the core developers, commented
that the adaptive compactions and smooth write throttling were something they
prioritised, and that the research gave a good perspective and could be an
inspiration into solving the problem (Fig. 5.1). He also asked me to contribute the
sine-wave benchmarking code from Section 3.4.2 to RocksDB, which was reviewed
and approved 31. May 2018[36]. Being able to contribute to a major database
system, combined with the positive feedback, is an accomplishment I am proud
of.
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5.2 Future Work

Rate-limiting Compactions

An especially interesting idea stumbled upon while working with compactions
and rate-limiter was to rate-limit the compactions exclusively. By calculating a
compaction rate-limit based on the flush rate, one could potentially gain better I/0
usage than a static disable/enable threshold. The idea is somewhat similar to how
active noise control works, but instead of cancelling sound to zero — we sum the
rates to the maximum rate write rate. This could be done by intervally calculate
the optimal compaction rate using determined flush rate and the maximum write
rate. This way one could possibly optimise the I/O efficiency even more, and
sustain a higher write rate combined with better read throughput.

Revisit rate-limiting

This proof-of-concept rate-limits the max cap (Section 3.5.1), achieving better
write throughput. This is the case because the max rate limit is set to the max
flush rate. However, the max compaction rate can utilise the I/O better than
the flushes, meaning that the compactions are throttled since the cap is too low.
This is shown in the plots where the Cumulative Compaction rate is much higher
with enabled compactions than tuned compactions (Fig. 4.5). There are multiple
approaches to tweak and avoid this from happening; one could lower the disable
compaction trigger watermark and increase the rate-limiter, or drop the actual
rate limiting and mimic the drain variables exclusively for the I/O detection. The
main issue encountered in terms of further improvements was the stability of the
compaction vs flush priority I/O percentages; thus the rate limiting proved useful
to gain more stable results.

Regarding rate-limiting, the fairness variable (Section 3.3.4) could also be
interesting to further evaluate since it is used to allow low priority requests to
be completed. Our intention is to prioritise flushes over compactions, hence the
fairness variable could be increased to reduce the amount of low-pri requests
(compactions) being accepted above high-pri (flushes).

Cancel Compactions

An idea to improve the reaction time of the insertion rate when disabling compac-
tions is to cancel initiated compactions. This way the insertion rate will be able
to utilise I/O for flushes without waiting for the compactions to finish.
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Manual Compactions

In the proof-of-concept implemented in this project, we enable compactions and
let RocksDB handle the compaction picking itself. It could be applicable to tailor
the compaction strategy post peak, and potentially determine a more optimal
compaction to perform when enabling compactions again.
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Appendix A

rocksdb-statistics: Statistics
Parser

#!/usr/bin/env python3

import re, argparse

import os

from itertools import accumulate

class Statistics:
def __init__(self):

self.uptime = ’Uptime\(secs\).*?(\d*\.\d*)\stotal’

self.interval = {
’name’: ’Interval step’,
’regex’: ’Uptime\(secs\).*?(\d*\.\d*)\sinterval’,
‘suffix’: ’_intervals’

}

self.interval_stall = {
name’: ’Interval Stall’,
‘regex’: ’Intervallsstall.*?(\d*\.\dx)\spercent’,
‘suffix’: ’_interval_stall’

}

self.cumulative_stall = {
name’: ’Cumulative Stall’,
‘regex’: ’Cumulative\sstall.*7(\d*\.\d*)\spercent’,
suffix’: ’_cumulative_stall’

}

self.interval_writes = {
name’: ’Interval Writes’,
‘regex’: ’Intervall\swrites.*?7(\d*\.\d*)\sMB\/s’,
‘suffix’: ’_interval_writes’
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self.cumulative_writes = {
name’: ’Cumulative Writes’,
’regex’: ’Cumulative\swrites.*?(\d*\.\d*)\sMB\/s’,

’suffix’: ’_cumulative_writes’
}
self.cumulative_compaction = {
’name’: ’Cumulative Compaction’,
’regex’: ’Cumulative\scompaction.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_cumulative_compaction’
}
self.interval_compaction = {
’name’: ’Interval Compaction’,
’regex’: ’Intervall\scompaction.*?(\d*\.\d*)\sMB\/s’,
’suffix’: ’_interval_compaction’
}

bl

self.legend_list = []
self.base_filename =

def coordinates_filename(self):
return self.base_filename + ’_coordinates.log’

def save_statistic(self, d, log, steps=None):
matches = self.get_matches(d[’regex’], log)
new_filename = self.base_filename + f’{d["suffix"]}.csv’
self.save_to_file(matches, new_filename)

coordinates = self.generate_coordinates(matches, steps)

self.save_coordinates_to_file(coordinates, self.
coordinates_filename())

self.legend_list.append(d["name"])

def clean_log(self, log):
regex = re.compile(’ (2018\8+) .*\ (([\d,\.1*)\) .*\(([\d,\.1%)\)
NN, N T9N\) %)
path = os.path.join(os.getcwd(), ’output’, log)
with open(path, ’r’) as f:

matches = regex.findall(f.read())
return [’,’.join(match) for match in matches]

def get_matches(self, regex, log):
regex = re.compile(regex)
path = os.path.join(os.getcwd(), log)
with open(path, ’r’) as f:
matches = regex.findall(f.read())
return matches

def generate_coordinates(self, matches, steps):
if not steps:
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return [f’({i*1},{match})’ for i, match in enumerate(matches)]
return [£’({key},{value})’ for key, value in zip(steps, matches)]

def save_to_file(self, data, filename):
os.makedirs(’output’, exist_ok=True)
with open(f’output/{filenamel}’, ’w’) as f:
f.writelines(’\n’. join(data))

def save_coordinates_to_file(self, data, filename, last=False):
os.makedirs(’output’, exist_ok=True)
with open(f’output/{filename}’, ’a’) as f:

str_data = ’’.join(data)

f.write(’\\addplot\n\tcoordinates {{ {0} }};\n’.format(str_data
))

if last:

legend = ’, ’.join(self.legend_list)
f.write(£f’\\legend{{{legend}}}\n’)

def append_legend(self, filename):
with open(f’output/{filename}’, ’a’) as f:
legend = ’, ’.join(self.legend_list)
f.write(£f"""
\\legend{{{legend}}}
\\end{{axis}}
\\end{{tikzpicturel}}
\\end{{subfigurel}}
"y

def initialize_coordinate_file(self, filename):
axis = £f""" \\begin{{subfigure}}[t]1{{0.5\\textwidth}}

\\begin{{tikzpicture}}

\\begin{{axis}}[

title={self.base_filenamel},

xlabel={{}},

ylabel={{MB/s}},

ymin=0,

ymax=250,

ytick={{0,50,...,300}},

width=\\textwidth,

legend style={{
at={{(0.5,-0.2)}},
anchor=north,legend columns=1

11,

ymajorgrids=true,

grid style=dashed,

]
with open(f’output/{filename}’, ’w’) as f:
f.write(axis)
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if

def

def

get_steps(self, regex, log):

interval_steps = self.get_matches(regex, log)[::2]

accumulated_steps = list(accumulate([float(step) for step in
interval_steps]))

rounded_steps = [round(step, 2) for step in accumulated_steps]

return rounded_steps

save_all(self, log):
self.base_filename = log.split(’.’) [0]
interval_steps = self.get_steps(self.interval[’regex’], log)
uptime_steps = [float(step) for step in self.get_matches(self.
uptime, log) [::2]]
min_interval_step = uptime_steps[0] - interval_steps[0]
steps = [round(step - min_interval_step, 2) for step in
uptime_steps]
.initialize_coordinate_file(self.coordinates_filename())
.save_statistic(self.interval_writes, log, steps)
.save_statistic(self.cumulative_writes, log, steps)
s.save_statistic(self.interval_stall, log)
s.save_statistic(self.cumulative_stall, log)
.save_statistic(self.interval_compaction, log, steps)
.save_statistic(self.cumulative_compaction, log, steps)
.append_legend(self.coordinates_filename())

__name__ == ’__main__’:

parser = argparse.ArgumentParser()
parser.add_argument ("log", type=str, help="logfile")

args = parser.parse_args()

s =

Statistics()

log = args.log
s.save_all(log)
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